Synthesis of 6-fluoroalkylbenzo[h]cyclopenta[c]quinoline and -benzo[c]phenanthridine derivatives

N. S. Karpenko, V. I. Filyakova, * E. G. Matochkina, M. I. Kodess, and K. I. Pashkevich

Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20 ul. S. Kovalevskoi, 620219 Ekaterinburg, Russian Federation. Fax: +7 (343 2) 74 1189. E-mail: cec@ios.uran.ru

Cyclization of 2-fluoroacylcycloalkanone lithium enolates (**1a**—**c**, Scheme 1) with α -naphthylamine afforded 6-fluoroalkylbenzo[h]dihydrocyclopenta[c]quinoline (**2a**) and -benzo[c]tetrahydrophenanthridine derivatives (**2b**,**c**).

Scheme 1

 $\mathsf{R}^\mathsf{F} = \mathsf{HCF}_2, \, n = 1 \, (\mathbf{a}); \, \mathsf{R}^\mathsf{F} = \mathsf{HCF}_2, \, n = 2 \, (\mathbf{b}); \, \mathsf{R}^\mathsf{F} = \mathsf{CF}_3, \, n = 2 \, (\mathbf{c})$ $\mathsf{R} = \mathsf{Me}, \, \mathsf{Et}$

Enolates **1a**—**c** were synthesized using a known procedure. ¹H, ¹⁹F, and ¹³C-{¹H} NMR spectra were recorded on a Bruker DRX-400 spectrometer (400 (¹H), 376 (¹⁹F), and 100 MHz (¹³C)) using CDCl₃ as the solvent and Me₄Si (¹H and ¹³C) and C₆F₆ (¹⁹F) as the internal standards. The reaction course was monitored by TLC on Silufol UV-254 plates using CHCl₃ as the eluent.

6-Difluoromethyl-8,9-dihydro-7*H***-benzo**[h]**cyclopenta**[c]**quinoline (2a).** A solution of enolate **1a** (2 g, 12 mmol) and α -naphthylamine (1.7 g, 12 mmol) in CF₃COOH (10 mL) was

refluxed until the starting compounds disappeared. The reaction mixture was poured on ice, and a precipitate was filtered off and recrystallized from n-hexane. The yield of compound 2a was 1.5 g (47%), m.p. 146 °C. Found (%): C, 75.98; H, 4.91; F, 14.11; N, 5.23. C₁₇H₁₃F₂N. Calculated (%): C, 75.82; H, 4.87; F, 14.11; N, 5.20. ¹H NMR, δ : 2.26 (tt, 2 H, H(8), J = 7.6 Hz); 3.20 (t, 2 H, H(9), J = 7.6 Hz); 3.31 (tt, 2 H, H(7), J = 7.6 Hz, $J_{H,F} =$ 1.6 Hz); 6.87 (t, 1 H, HCF₂, $J_{H,F}$ = 55.0 Hz); 7.59 (d, 1 H, H(10), J = 9.0 Hz); 7.65 (ddd, 1 H, H(2), J = 7.8 Hz, J =6.9 Hz, J = 1.5 Hz); 7.70 (ddd, 1 H, H(3), J = 8.1 Hz, J =6.9 Hz, J = 1.4 Hz); 7.77 (d, 1 H, H(11), J = 9.0 Hz); 7.85 (dd, 1 H, H(1), J = 7.8 Hz, J = 1.4 Hz); 9.25 (dd, 1 H, H(4), J =8.1 Hz, J = 1.5 Hz). ¹³C NMR, δ : 24.56 (C(8)); 30.50 (t, C(7), ${}^{4}J_{C,F} = 2.0 \text{ Hz}$; 30.77 (C(9)); 117.08 (t, HCF₂, ${}^{1}J_{C,F} =$ 239.7 Hz); 121.72 (C(10)); 124.49 (C(9b)); 124.70 (C(4)); 127.23 (C(3)); 127.86 (C(1)); 127.94 (C(2)); 128.83 (C(11)); 131.69(C(4a)); 133.20 (C(11a)); 135.13 (C(6a)); 143.76 (t, C(4b)), ${}^{4}J_{C,F} = 1.4 \text{ Hz}$; 146.86 (t, C(6), ${}^{2}J_{C,F} = 27.3 \text{ Hz}$); 153.09 (t, C(9a), ${}^{4}J_{C,F} = 1.4 \text{ Hz}$). ${}^{19}F \text{ NMR}$, δ : 47.95 (dt, HCF₂, ${}^{2}J_{H,F} =$ 55.0 Hz, ${}^{5}J_{H,F} = 1.6$ Hz).

6-Difluoromethyl-7,8,9,10-tetrahydrobenzo[c]phenanthridine (2b). Compound 2b was synthesized similarly from enolate **1b** (1.5 g, 9 mmol) and α -naphthylamine (1.27 g, 9 mmol), yield 1.3 g (51%), m.p. 146-147 °C. Found (%): C, 76.17; H, 5.30; F, 13.49; N, 5.30. C₁₈H₁₅F₂N. Calculated (%): C, 76.31; H, 5.33; F, 13.41; N, 4.94. ¹H NMR, δ: 1.89–2.02 (m, 4 H, H(8), H(9)); 3.10 (m, 2 H, H(10)); 3.14 (m, 2 H, H(7)); 6.93 (t, 1 H, HCF₂, $J_{H,F} = 54.9$ Hz); 7.63 (ddd, 1 H, H(2), J = 7.7 Hz, J = 6.8 Hz, J = 1.5 Hz); 7.68 (ddd, 1 H, H(3), J = 8.1 Hz, J = 6.8 Hz, J = 1.6 Hz; 7.72, 7.76 (both d, 1 H each, H(11), H(12), J = 9.1 Hz); 7.83 (dd, 1 H, H(1), J = 7.7 Hz, J =1.6 Hz); 9.25 (dd, 1 H, H(4), J = 8.1 Hz, J = 1.5 Hz). ¹³C NMR, δ: 21.88 (C(8)); 22.04 (C(9)); 24.33 (t, C(7), ${}^{4}J_{C.F} = 3.5 \text{ Hz}$); 26.10 (C(10)); 118.64 (t, HCF₂, ${}^{1}J_{C,F} = 242.4$ Hz); 120.15 (C(11)); 124.50 (C(4)); 125.96 (C(10b)); 127.16 (C(3)); 127.59 (C(1)); 127.86 (C(2)); 128.76 (C(12)); 129.25 (C(4a)); 131.74 (C(12a)); 132.87 (C(6a)); 142.32 (t, C(4b), ${}^{4}J_{C,F} = 1.4 \text{ Hz});$ 143.77 (C(10a)); 148.57 (t, C(6), ${}^{2}J_{C,F} = 25.1 \text{ Hz}).$ ¹⁹F NMR, δ : 49.23 (d, HCF₂, ${}^{2}J_{H,F}$ = 54.9 Hz).

6-Trifluoromethyl-7,8,9,10-tetrahydrobenzo[c]phenanthridine (2c). Compound 2c was obtained similarly from enolate 1c (2 g, 1 mmol) and α-naphthylamine (1.43 g, 1 mmol), yield 1.81 g (61%), m.p. 142 °C. Found (%): C, 71.75; H, 4.70; F, 19.17; N, 4.65. $C_{18}H_{14}F_{3}N$. Calculated (%): C, 71.75; H, 4.68;

F, 18.92; N, 4.65. ¹H NMR, δ: 1.86–1.97 (m, 4 H, H(8), H(9)); 3.06 (tq, 2 H, H(7), J = 6.2 Hz, $J_{\rm H,F} = 1.3$ Hz); 3.16 (t, 2 H, H(10)); 7.66 (ddd, 1 H, H(2), J = 7.7 Hz, J = 7.0 Hz, J = 7.01.6 Hz); 7.71 (ddd, 1 H, H(3), J = 8.2 Hz, J = 7.0 Hz, J =1.5 Hz); 7.76, 7.82 (both d, 1 H each, H(11), H(12), J = 9.1 Hz); 7.85 (dd, 1 H, H(1), J = 7.7 Hz, J = 1.5 Hz); 9.29 (dd, 1 H, H(4), J = 8.2 Hz, J = 1.6 Hz). ¹³C NMR, δ: 21.90 (C(8), C(9)); 24.95 (q, C(7), ${}^4J_{\text{C,F}} = 3.1 \text{ Hz}$); 26.27 (C(10)); 119.95 (C(11)); 122.72 (q, CF₃, ${}^1J_{\text{C,F}} = 276.5 \text{ Hz}$); 124.82 (C(4)); 126.43 (C(10b)); 127.43 (C(3)); 127.56 (C(1)); 128.16 (C(2)); 128.61 (C(12)); 129.44(C(4a)); 131.81(C(12a)); 132.96(C(6a)); 142.06

(C(4b)); 144.38 (q, C(6)), ${}^{2}J_{C,F} = 32.0 \text{ Hz}$); 144.39 (C(10a)). ¹⁹F NMR, δ: 96.84 (t, CF₃, ${}^{5}J_{H,F} = 1.3$ Hz).

References

1. V. I. Filyakova, N. S. Karpenko, O. A. Kuznetsova, and K. I. Pashkevich, Zh. Org. Khim., 1998, 34, 411 [Russ. J. Org. Chem., 1998, 34, 381 (Engl. Transl.)].

> Received January 10, 2003; in revised form March 12, 2003